

Journal of Alloys and Compounds 262-263 (1997) 114-117

to format SCOLLS SCINDS SCILLS

Crystal chemistry and magnetic properties of ternary stannides $R_2M_2Sn (R = rare earth or uranium, M = Ni, Pd)$

B. Chevalier*, F. Fourgeot, D. Laffargue, P. Gravereau, L. Fournès, J. Etourneau

Institut de Chimie de la Matière Condensée de Bordeaux, (ICMCB)-[UPR 9048], Université de Bordeaux I, Avenue du Dr A. Schweitzer, 33608 Pessac, France

Abstract

We have synthesized a great number of ternary stannides R_2Ni_2Sn , $R_2Pd_{2+1}Sn_{1-3}$ (R = rare earth) and U_2M_2Sn (M = Fe, Co, Ni, Ru, Rh, Pd, Ir, Pt). They crystallize either in the orthorhombic W_2CoB_2 -type or in the tetragonal U_3Si_2 -type. A structural relationship exists between these types and those of binary RNi and ternary RNiSn or RPdSn equiatomic compounds. Attention is also focused on the wide range of their magnetic properties [complex (B, T)-magnetic phase diagram, antiferromagnetic \Rightarrow ferromagnetic transition...]. © 1997 Elsevier Science S.A.

Keywords: Uranium: Rare earth: Stannides; Crystal structure: Magnetic properties

1. Introduction

The ternary uranium U_2M_2Sn stannides (M = Fe, Co, Ni, Ru, Rh, Pd, Ir, Pt) have been extensively investigated during the past 3 years due to their wide range of physical properties [1,2]. The existence of this family of uranium compounds allows us to study the influence of 5f(U)-ligand hybridization effects on the electronic and magnetic properties. These stannides except U_2Ir_2Sn and U_2Pt_2Sn crystallize in the tetragonal ordered version of the U_3Si_2 -type structure [3], U_2Ir_2Sn and U_2Pt_2Sn adopt the tetragonal Zr_3Al_2 -type which is a superstructure of the U_3Si_2 type [4].

Recently, some investigations have been carried out on some similar stannides based on cerium such as Ce_2Ni_2Sn [5,6] and $Ce_2Pd_{2+1}Sn_{1+1}$ [6-8]. Isotypic compounds can be obtained with other rare earth elements. A survey of their structural and magnetic properties is the subject of this present paper.

2. Results and discussion

All ternary stannides were prepared by melting of the constituent elements under a purified argon atmosphere. The samples were then annealed under vacuum at 800°C for 2-3 weeks. Their purity and chemical composition homogeneity were checked by microprobe analysis and X-ray powder diffraction.

2.1. Formation of the stannides

The ternary compounds R_2Ni_2Sn are obtained for R = Ce, Nd, Gd, Tb and Dy. Our attempts to synthesize Ho₂Ni₂Sn and Er₂Ni₂Sn have failed. Moreover the microprobe analysis performed on Tb₂Ni₂Sn and Dy₂Ni₂Sn samples reveals the presence of parasitic phases such as equiatomic stannide TbNiSn or DyNiSn and binary compound TbNi₂ or DyNi₂. It is certain that the stability of R_2Ni_2Sn stannides is governed by the size of the R-element.

Nowadays, the $R_2Pd_{2+\chi}Sn_{1-\chi}$ compounds can be obtained with R = Ce, Nd, Gd, Tb, Dy, Ho, Er and U

^{*} Corresponding author.

and present a large range of homogeneity on the palladium rich side [6–10]. For instance these stannides exist with R = Ce and U, respectively, for $0.04(3) \le x \le 0.21(4)$ [7] and $0 \le x \le 0.44(2)$ [9].

2.2. Crystal structure

All the R_2Ni_2Sn compounds based on rare earths crystallize in the orthorhombic structure related to the W_2CoB_2 -type. R atoms form a three-dimensional network (Fig. 1) and constitute a $[R_8]$ prism surrounding either Sn atoms or Ni–Ni pairs. These last atoms are located inside a distorted $[R_6]$ trigonal prism. An interesting structural comparison concerns CeNi (CrB-type), Ce₂Ni₂Sn and CeNiSn (TiNiSi-type) (Fig. 1) which contain trigonal prisms [NiCe₆] more or less distorted. The formation of Ce₂Ni₂Sn and CeNiSn stannides arises from the insertion of Sn atoms into the $[Ce_6]$ prisms which are unoccupied in CeNi. According to the sequence $Ce_2Ni_2Sn \Rightarrow CeNiSn$, Sn fills a double $[Ce_6]$ prism so forming a $[SnCe_8]$ prism then a simple $[SnCe_6]$ trigonal prism.

The unit cell parameters of $R_2 Ni_2 Sn$ compounds decrease with the size of the rare earth (Table 1). This variation leads to a decrease of d_{Ni-Sn} distance which varies from 0.2734(1) nm to 0.2642(1) nm following the sequence $Ce_2Ni_2Sn \Rightarrow Dy_2Ni_2Sn$. These values, much smaller than the metallic radii sum $(r_{Ni} + r_{Sn} = 0.2869 \text{ nm})$, suggest a strong 3d(Ni) - 5p(Sn) bond in these compounds.

All the $R_2Pd_{2+x}Sn_{1-x}$ compounds crystallize in the tetragonal Ce₂Pd_{2+x}Sn_{1-x}-type structure (Fig. 1) where Pd excess atoms occupy one split position surrounding the replaced Sn atoms [7]. This structure is

Fig. 1. Comparison of the crystal structure of CeM (M = Ni), Ce₂Ni₂Sn, Ce₂M₂Sn (M = Pd, Pt) and CeMSn (M = Ni, Pd, Pt).

Table I			
Crystallographic dat	a relative	to R ₂ Ni ₂ Sn	stannides

R	Lattice parameters (nm)			Volume (nm ³)	Reference
	теленовите сан телено 446 сдо-1604 (0,1152) с от		nonenteringen en e		
co	0.4391(1)	0.5735(2)	0.8591(3)	0.2163	[6]
Ce	0.43936(9)	0.57396(9)	0.85967(13)	0.2168	[5]
Nd	0.4360(1)	0.5695(2)	0.8498(2)	0.2110	[11]
Gd	0.4294(1)	0.5638(1)	0.8390(1)	0.2031	[*]
Th	0.4278(1)	0.5614(1)	0.8332(1)	0/2001	[*]
Dv	0.4247(1)	0.5615(1)	0.8273(1)	0.1973	["]

^a This work.

characterized by infinite columns of $[Ce_n]$ trigonal prisms surrounding Pd atoms and infinite columns of $[Ce_s]$ tetragonal prisms where Sn or Pd excess atoms take position.

2.3. Magnetic properties

Our recent investigations indicate that: (i) the magnetic properties of Ce₂Ni₂Sn appear to be governed by a strong competition between the Kondo and **RKKY** magnetic interactions; it exhibits the behaviour of a magnetically ordered Kondo system having $T_{\rm K} \approx 8$ K and $T_{\rm N} = 4.7$ K, respectively, as Kondo and Néel temperatures [5]; (ii) at low fields, Nd₂Ni₂Sn shows three ordering transitions, one antiferromagnetic occuring at 21 K and the others appearing, respectively, at 17.7 K and 14–15 K; the complex magnetic phase diagram of Nd₂Ni₂Sn suggests a competition between the magnetocrystalline anisotropy produced by CEF effect and the oscillatory character of the RKKY exchange interactions [11].

As claimed previously, the purity of Tb₂Ni₂Sn and Dy₂Ni₂Sn samples is not good and their investigation by magnetization measurements confirm this statement. Three maximums are clearly visible on the Mag. = f(T) curve concerning the temperature dependence of the magnetization of Tb₂Ni₂Sn (Fig. 2): (i) the first appearing at 65(1) K could be attributed to the occurrence of antiferromagnetic ordering for this stannide: (ii) on the contrary, the others peaks around 42(1) K and 7(1) K, respectively, characterize the presence of TbNi₂ (ferromagnet at $T_c = 45$ K) [12] and TbNiSn (antiferromagnet at $T_N = 20$ K but exhibiting a canted structure at 7 K) [13]. The susceptibility of Tb₂Ni₂Sn exhibits Curie–Weiss behaviour above 80 K: the parameters obtained by fitting are

Fig. 2. Temperature dependence of the magnetization of Tb₂Ni₂Sn.

Fig. 3. Temperature dependence of the magnetization of $Tb_2Pd_{2,02}Sn_{0.98}$.

 $\mu_{\text{cff}} = 10.23 \ \mu_B / \text{Tb}$ and $\theta_p = 39 \text{ K}$. Neutron diffraction experiments are now in progress in order to establish the intrinsic magnetic properties of Tb₂Ni₂Sn.

Various magnetic properties are observed for $\mathbf{R}_{2}\mathbf{Pd}_{2}$, \mathbf{Sn}_{1-1} stannides: (i) a phase transition between an incommensurate antiferromagnetic structure and a simple ferromagnetic one appears around 2.8=3.4 K for Ce₂Pd_{2.04}Sn_{0.96} [14]; (ii) Nd₂Pd_{2+x}Sn_{1-x} compounds order antiferromagnetically but the T_N temperature decreases with increasing x ($T_N = 8.8(3)$) K and 6.5(3) K, respectively, for x = 0.02 and 0.12). Moreover, these stannides exhibit several step-like field induced metamagnetic transitions [15]: (iii) neutron powder diffraction yields for $U_2Pd_{2+1}Sn_{1-1}$ non-collinear k = (0, 0, 0) (x = 0) and collinear k = (0, 0, 0)(0, 1/2) (x = 0.35) antiferromagnetic structures with magnetic moments at 1.5 K equal to 2.20(5) and 0.90(2) μ_B/U , respectively; the reduced U-magnetic moment observed for x = 0.35 can be correlated to an increase of the number of Pd atoms surrounding U ones and favouring the 5f(U)-4d(Pd) hybridization [16].

All the $R_2Pd_{2+1}Sn_{1-1}$ stannides with R = Gd, Tb, Dy, Ho and Er order antiferromagnetically. For instance, the magnetization of $Tb_2Pd_{2,02}Sn_{0.98}$ as a function of the temperature (Fig. 3) exhibits a maximum, indicating the onset of antiferromagnetic ordering at $T_N = 22(1)$ K. Also, at 2 K the field dependence of its magnetization evidences metamagnetic-like behaviour with a critical field of approx. 3.5 T. Similar measurements performed on $R_2Pd_{2,02}Sn_{0.98}$ compounds indicate that T_N is equal to 27.5(5), 13(1), 6(1) and 8(1) K for R = Gd, Dy, Ho and Er, respectively.

References

- [1] F. Mirambet, B. Chevalier, L. Fournès, P. Gravereau, J. Etourneau, J. Alloys Comp. 203 (1994) 29.
- [2] M.N. Peron, Y. Kergadallan, J. Rebizant, et al., J. Alloys Comp. 201 (1993) 203.
- [3] F. Mirambet, P. Gravereau, B. Chevalier, L. Trut, J. Etourneau, J. Alleys Comp. 191 (1993) L1.
- [4] P. Gravereau, F. Mirambet, B. Chevalier, et al., J. Mater. Chem. 4 (1994) 1893.
- [5] F. Fourgeot, B. Chevalier, P. Gravereau, L. Fournès, J. Etourneau, J. Alloys Comp. 218 (1995) 90.
- [6] R.A. Gordon, Y. Ijiri, C.M. Spencer, F.J. DiSalvo, J. Alloys Comp. 224 (1995) 101.
- [7] F. Fourgeot, P. Gravereau, B. Chevalier, L. Fournès, J. Etourneau, J. Alloys Comp. 238 (1996) 102.

- [8] R.A. Gordon, F.J. DiSalvo, J. Alloys Comp. 238 (1996) 57.
- [9] F. Mirambet, L. Fournès, B. Chevalier, P. Gravereau, J. Etourneau, J. Magn. Magn. Mater. 138 (1994) 244.
- [10] F. Fourgeot, Thesis, University of Bordeaux I, 1576, 1996.
- [11] B. Chevalier, F. Fourgeot, L. Fournès, P. Gravereau, G. LeCaër, J. Etourneau, Physica B 226 (1996) 283.
- [12] J. Farrel, W.E. Wallace, Inorg. Chem. 5 (1966) 105.
- [13] J.K. Yakinthos, Ch. Routsi, J. Magn. Magn. Mater. 149 (1995) 273.
- [14] D. Laffargue, F. Fourgeot, F. Bourée, B. Chevalier, T. Roisnel, J. Etourneau, Solid State Commun. 100 (1996) 575.
- [15] F. Fourgeot, B. Chevalier, D. Laffargue, J. Etourneau, J. Magn. Magn. Mater. (to be published).
- [16] D. Laffargue, F. Bourée, B. Chevalier, T. Roisnel, P. Gravereau, J. Etourneau, J. Magn. Magn. Mater. 170 (1997) 155.